Hall Ticket Number:

Code No.: 22501 M

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (ECE: CBCS) II-Semester Make Up Examinations, September-2017 (Communication Engineering & Signal Processing)

Coding Theory and Techniques

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 × 2 = 20 Marks)

- 1. State Shannon Hartley capacity theorem and explain in brief.
- 2. Define channel coding gain with illustration.
- 3. Determine whether $X^3 + X + 1$ is an irreducible polynomial or not.
- 4. Consider an (255, 247) RS code. For a block of 255 how many symbol errors can this code correct?
- 5. What is catastrophe error propagation in convolutional code?
- 6. Write structural properties of convolutional codes.
- 7. Why is puncturing used for Turbo codes?
- 8. Describe the significance of extrinsic probability used in Turbo decoding.
- 9. Why is MIMO preferred over SISO systems?
- 10. Describe diversity gain.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a)	Show BER performance for various modulation schemes.	[6]
	b)	For error correcting codes describe trade-off between BER performance and bandwidth and also between data rate and bandwidth.	[4]
12.	a)	The polynomial $p(X) = 1 + X + X^4$ is a primitive polynomial over Galois Field, GF(2). Show 4-tuple representation for the elements of GF(2 ⁴).	[6]
	b)	Let the transmission code be the double error correcting RS code of length 7. Obtain syndrome polynomials for the following received vector $\mathbf{r} = (0 \ 0 \ \alpha^5 \ 1 \ \alpha^2 \ 0 \ \alpha^2)$	[4]
13.	a)	A convolutional code is generated by an encoder having the impulse responses $g_1 = (101)$; $g_2 = (111)$. Draw the corresponding encoder.	[4]
	b)	Construct the state diagram for the above encoder.	[6]
14.	a)	Sketch Turbo encoder using recursive convolutional code and explain it in detail.	[6]
	b)	Explain the effect of number of iterations and puncturing on the performance of turbo codes.	[4]
15.	a)	Describe Alamouti scheme in relation to 2×2 MIMO scheme.	[6]
	b)	List key features of space-time codes.	[4]
16.	a)	If BER of 10 ⁻⁴ is achieved at $\frac{E_b}{N_0} = 8.4$ dB in detecting BPSK modulation in an AWGN	[5]
		channel, determine the coding gain required to maintain the same BER when the modulation format is changed from BPSK to noncoherent BFSK.	
	b)	Derive generator matrix G for LDPC codes from H matrix.	[5]
17.	A	nswer any two of the following:	
		a) What are the advantages of concatenated codes over a single block code?b) Why is Log Likelihood Ratio preferred for Turbo decoder?	[5] [5]
		c) Derive MIMO fading channel capacity expression.	[5]
		(rg(rg)rg))	